Lecture 03

1.5. Initial value problem for 1 dimensional conservation law. Let $\rho(x,t)$ and q(x,t) be density and flux of fluid at $x \in \mathbb{R}$ and $t \in \mathbb{R}$.

$$\rho_t + q_x = 0$$

is called 1 dimensional conservation law. This is mass conservation law of fluid. We restrict our consideration to ρ and q which are dependent only on a function u(x,t) i.e. $\rho = \rho(u(x,t))$ and q = q(u(x,t)).

EXAMPLE 1.1. Let u(x,t) solve

$$\begin{cases} a(u) \cdot u_x + u_t = 0\\ u(x,0) = f(x). \end{cases}$$

for some function $a(\cdot)$ and $f(\cdot)$. Let A'(u) = a(u) for a function $A(\cdot)$ then (1.1) becomes $(A(u))_x + u_t = 0$, which is a conservation law if u and A(u) are regarded as density and flux respectively. So (1.1) is the initial value problem of 1 dimensional conservation law. To find the solution, consider the associated vector field $(a(u(x,t)), 1, 0) \text{ on } \{(x,t,u)\}$ and obtain its 1st integrals from the following equation for integral curves.

$$\frac{dx}{a(u)} = \frac{dt}{1} = \frac{du}{0}$$

From the second identity $\phi_1(x, t, u) := u$ is constant along integral curves. The first identity implies that dx - a(u)dt = 0 so that $\phi_2(x, t, u) := x - a(u)t$ is constant along integral curves. Note that a(u) is kept constant since u is. Now ϕ_1 and ϕ_2 are functionally independent 1st integrals so that every integral surface is given by $F(\phi_1, \phi_2) = 0$ for a function F. Solve this for u to get the general solution for (1.1). Along initial curve $(x, 0, f(x)), \phi_1 = f(x)$ and $\phi_2 = x$. Hence $\phi_1 - f(\phi_2) = 0$. Let $F(\phi_1, \phi_2) := u - f(x - a(u)t) = 0$ and we solve this for u = u(x, t). To solve it for u requires the implicit function theorem condition

(1.1)
$$F_u = 1 - f'(x - a(u)t) \cdot (-a(u)t) = 1 + f'(x - a(u)t) \cdot a'(u)t \neq 0.$$

Now will this initial value problem have the unique solution? We need to check that the initial value u = f(x) at t = 0 is noncharacteristic. Actually

$$\det \begin{bmatrix} 1 & 0\\ a(f(x)) & 1 \end{bmatrix} \neq 0$$

at t = 0. Note that this noncharacteristic conditon holds true whatever f is given. In view of (1.1), if |t| is sufficiently small there exists the solution of the form u = u(x, t). But what if the time t elapses further? From $F(\phi_1(x, t, u), \phi_2(x, t, u)) = F(x, t, u) = 0$,

(1.2)
$$u_x = -\frac{F_x}{F_u} = -\frac{-f'}{1 + f'(x - a(u)t)a'(u)t}$$

(1.3)
$$u_t = -\frac{F_t}{F_u} = -\frac{-f'a(u)}{1 + f'(x - a(u)t)a'(u)t}.$$

In case $f' \neq 0$, if |t| increases on to make denominators of (1.2) and (1.3) approach 0, u_x and u_t blow up to $\pm \infty$, which we call *shock*.

EXAMPLE 1.2. Let $x \in \mathbb{R}$ and u(x,t) be the solution to

(1.4)
$$\begin{cases} u \cdot u_x + u_t = 0\\ u(x,0) = -x. \end{cases}$$

Consider in $\{(x, t, u)\}$

$$\frac{dx}{u} = \frac{dt}{1} = \frac{du}{0}$$

Solutions are $\phi_1 := u = \text{constant}$ from the second identity and $\phi_2 := x - ut = \text{constant}$ by dx - udt = 0 from the first identity. The general solution is F(u, x - ut) = 0 for some function F. Along the initial curve $\phi_1 = -x$ and $\phi_2 = x$, hence $\phi_1 + \phi_2 = 0$ i.e. u + x - ut = 0. Hence the solution to the initial value problem is F(x, t, u) =(1 - t)u + x = 0, which is $u = -\frac{x}{1-t}$ for $|t| \approx 0$. $F_u = 1 - t$ indicates that there is a shock at t = 1. The level curves of the solution describes the shock in geometric manner. Level curves for u = 0, u = 1 and u = 2 are x = 0, t = x + 1 and t = x/2 + 1 respectively, which intersect one another at x = 0 and t = 1. This means that the *flows* continues smoothly while t < 1 but it runs into the infinite increase or decrease, namely *shock* at t = 1.

EXERCISE 1.3. Let $u(x,t), x \in \mathbb{R}$ be the function that solves an initial value problem of 1 dimensional conservation law

$$\begin{cases} u_t + 2uu_x = 0\\ u(x,0) = 10 - x. \end{cases}$$

- (1) Find a local solution near (x, t) = (0, 0).
- (2) Find level curves in $\{(x, t)\}$ plane, for example u = 5, u = 10 etc.
- (3) When does the shock occur?

CHAPTER 2

Cauchy Kowalesky Theorem

1. Characteristic of linear partial differential oprators

Let $x = (x_1, \ldots, x_n) \in \Omega$ an open subset in \mathbb{R}^n . For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$, we let $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and $\alpha! = \alpha_1! \cdots \alpha_n!$.

For $x \in \mathbb{R}^n$ and u(x) a function in Ω we put $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $\partial^{\alpha} u(x) := \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} u(x).$

DEFINITION 1.1. For a nonnegative integer k and functions $a_{\alpha}(x)$ and f(x)

$$\sum_{|J| \le k} a_{\alpha}(x) \cdot \partial^{\alpha} u(x) = f(x)$$

is called *linear partial differential equation* of order k.

REMARK 1.2. Note that the coefficient functions a_{α} depend only on x not on u.

Our first concern about such equations is the *characteristic* of the linear partial differential operator involved. Roughly speaking, the notion of *characteristic* is the "strength" of a linear partial differential operator

(1.1)
$$L = \sum_{|\alpha| \le k} a_{\alpha}(x) \cdot \partial^{\alpha}$$

in a certain direction.

DEFINITION 1.3. For (1.1), the characteristic form at $x \in \Omega$ is the homogeneous polynomial of degree k defined by

(1.2)
$$\chi_L(x,\xi) := \sum_{|\alpha|=k} a_{\alpha}(x)\xi^{\alpha}$$

for nonzero vector ξ in \mathbb{R}^n . This is also called *principal symbol* of (1.1).

DEFINITION 1.4. A vector $\xi \neq 0$ is characteristic for L at x if $\chi_L(x,\xi) = 0$. The set of characteristic vectors, denoted by $\operatorname{char}_x L$, is called *characteristic variety*.

PROPOSITION 1.5. For (1.1) the following holds.

- (1) $\operatorname{char}_{x}L$ is intrinsically defined i.e. independent of co-ordinates.
- (2) L is said to be elliptic if $\chi_L(x,\xi) \neq 0$ for any $x \in \Omega$ and nonzero $\xi \in \mathbb{R}^n$. Such notion of ellipticity is intrinsic.

PROOF. Suppose that (1.1) is defined on an open set U_p of n dimensional manifold M with $p \in M$. Let $\mathcal{X} : U_p \to \Omega$ and $\mathcal{Y} : U_p \to \Omega'$ be two local co-ordinate charts. Their transition map is a diffeomorphism y = F(x) from $x \in \Omega$ to $y \in \Omega'$

where $F := \mathcal{Y} \circ \mathcal{X}^{-1}$. Jacobian of F is

$$J = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_n} \end{bmatrix}.$$

How the vector and co-vector fields components change per co-ordinates changes are as follows. Tangent vectors in two co-ordinate expressions are

$$a_j \frac{\partial}{\partial x_j} = b_i \frac{\partial}{\partial y_i}.$$

Noting that $\frac{\partial}{\partial x_j} = \frac{\partial y_i}{\partial x_j} \frac{\partial}{\partial y_i}$ we have

$$a_j \frac{\partial y_i}{\partial x_j} = b_i$$
 or $\begin{bmatrix} b_1\\ \vdots\\ b_n \end{bmatrix} = J \cdot \begin{bmatrix} a_1\\ \vdots\\ a_n \end{bmatrix}$

i.e. $\mathbf{b}_{new} = J \cdot \mathbf{a}_{old}$. Tangent vector components transform is Jacobian multiplication.

Cotangent vectors in two co-ordinates expressions are

$$\eta_j dx_j = \xi_i dy_i.$$

Noting $dy_i = \frac{\partial y_i}{\partial x_j} dx_j$,

$$\eta_j = \xi_i \frac{\partial y_i}{\partial x_j}$$
 or $\begin{bmatrix} \eta_1 \\ \vdots \\ \eta_n \end{bmatrix} = J^t \cdot \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$

i.e. $\eta = J^t \xi$ hence $\underbrace{\xi}_{new} = (J^t)^{-1} \underbrace{\eta}_{old}$. The diffeomorphic transition map y = F(x)and transformation rule $\frac{\partial}{\partial x_i} = \frac{\partial y_j}{\partial x_i} \frac{\partial}{\partial y_j}$ change (1.1) and (1.2) into

(1.3)
$$L' = \sum_{|\alpha| \le k} a_{\alpha}(F^{-1}(y))(J^{t}\partial_{y})^{\alpha}$$

(1.4)
$$\chi_{L'}(y,\xi) = \sum_{|\alpha|=k} a_{\alpha}(F^{-1}(y))(J^t\xi)^{\alpha}$$

respectively. Comparison of (1.2) and (1.4) shows that

$$\xi \in \operatorname{char}_y(L') \quad \Rightarrow \quad (J^t \xi) \in \operatorname{char}_{\underbrace{F^{-1}(y)}_{=x}}(L)$$

and characteristic forms obey tangent vector transformation rules. Hence we define the characteristic variety as a subset of cotangent space to have them intrinsic. It now follows easily that the ellipticity is also intrinsic in view of its definition.

DEFINITION 1.6. A hypersurface S in Ω is *characteristic* at x for L in (1.1) if normal vector $\nu(x)$ to \mathcal{S} is in char_x(L). \mathcal{S} is non-characteristic if \mathcal{S} is not characteristic at any point.

2. NON-CHARACTERISTIC DIRECTIONS

2. Non-characteristic directions

For the linear partial differential operator $L = \sum_{|\alpha| \le k} a_{\alpha}(x) \partial^{\alpha}$ and $\xi \in char_x(L)$, we can choose suitable co-ordinates¹ to have $\xi \in (0, \ldots, 0, \underbrace{1}_{ith}, 0, \ldots, 0)$ after co-

ordinate transformation. Then

$$\begin{cases} \xi \in \mathsf{char}_x(L) \quad \Leftrightarrow \quad \text{the coefficient to } \left(\frac{\partial}{\partial x_j}\right)^k \text{ vanishes at } x, \\ \xi \notin \mathsf{char}_x(L) \quad \Leftrightarrow^2 \quad \text{the coefficient to } \left(\frac{\partial}{\partial x_j}\right)^k \text{ is nonzero at } x. \end{cases}$$

For the second case Lu = f can be solved for $\partial_j^k u$ to give

$$\partial_j^k u = G(x, \partial^{\alpha} u : |\alpha| \le k, \alpha \ne (0, \dots, \underbrace{1}_{jth}, \dots, 0)),$$

which shows that the partial differential equation Lu = f has *control* over the solution u in ξ direction.

Note that L is elliptic at x if $char_x(L)$ is an empty set and L is elliptic on Ω if it is elliptic at every $x \in \Omega$.

EXAMPLE 2.1.

- (1) For u(x,y) defined on \mathbb{R}^2 , consider $\Delta = \left(\frac{\partial}{\partial x}\right)^2 + \left(\frac{\partial}{\partial y}\right)^2$. Note that the coefficients are constants, hence independent of x. $\chi_{\Delta}(x,\xi) = \xi_1^2 + \xi_2^2 \neq 0$ for all $(\xi_1,\xi_2) \neq 0$ which implies that it is elliptic.
- (2) Consider the wave operator L = (∂/∂x)² (∂/∂y)². The coefficients are also constant, independent of x. χ_L(x, ξ) = ξ₁² ξ₂² vanishes for some nonzero vector ξ and hence L is not elliptic.
 (2) E₁ = (x + 1) + (
- (3) For u(x,t) defined on an open set of \mathbb{R}^2 , consider the heat operator $L = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial x}\right)^2$. $\chi_L(x,\xi) = (\xi_1)^2$ admits a non-characteristic vector $\xi = (0,1)$ and hence L is not elliptic.

¹Rotations and dilations etc.