1.5. Initial value problem for 1 dimensional conservation law. Let $\rho(x, t)$ and $q(x, t)$ be density and flux of fluid at $x \in \mathbb{R}$ and $t \in \mathbb{R}$.

$$
\rho_{t}+q_{x}=0
$$

is called 1 dimensional conservation law. This is mass conservation law of fluid. We restrict our consideration to ρ and q which are dependent only on a function $u(x, t)$ i.e. $\rho=\rho(u(x, t))$ and $q=q(u(x, t))$.

Example 1.1. Let $u(x, t)$ solve

$$
\left\{\begin{array}{l}
a(u) \cdot u_{x}+u_{t}=0 \\
u(x, 0)=f(x) .
\end{array}\right.
$$

for some function $a(\cdot)$ and $f(\cdot)$. Let $A^{\prime}(u)=a(u)$ for a function $A(\cdot)$ then (1.1) becomes $(A(u))_{x}+u_{t}=0$, which is a conservation law if u and $A(u)$ are regarded as density and flux respectively. So (1.1) is the initial value problem of 1 dimensional conservation law. To find the solution, consider the associated vector field $(a(u(x, t)), 1,0)$ on $\{(x, t, u)\}$ and obtain its 1st integrals from the following equation for integral curves.

$$
\frac{d x}{a(u)}=\frac{d t}{1}=\frac{d u}{0}
$$

From the second identity $\phi_{1}(x, t, u):=u$ is constant along integral curves. The first identity implies that $d x-a(u) d t=0$ so that $\phi_{2}(x, t, u):=x-a(u) t$ is constant along integral curves. Note that $a(u)$ is kept constant since u is. Now ϕ_{1} and ϕ_{2} are functionally independent 1st integrals so that every integral surface is given by $F\left(\phi_{1}, \phi_{2}\right)=0$ for a function F. Solve this for u to get the general solution for (1.1). Along initial curve $(x, 0, f(x)), \phi_{1}=f(x)$ and $\phi_{2}=x$. Hence $\phi_{1}-f\left(\phi_{2}\right)=0$. Let $F\left(\phi_{1}, \phi_{2}\right):=u-f(x-a(u) t)=0$ and we solve this for $u=u(x, t)$.

To solve it for u requires the implicit function theorem condition

$$
\begin{equation*}
F_{u}=1-f^{\prime}(x-a(u) t) \cdot(-a(u) t)=1+f^{\prime}(x-a(u) t) \cdot a^{\prime}(u) t \neq 0 \tag{1.1}
\end{equation*}
$$

Now will this initial value problem have the unique solution? We need to check that the initial value $u=f(x)$ at $t=0$ is noncharacteristic. Actually

$$
\operatorname{det}\left[\begin{array}{cc}
1 & 0 \\
a(f(x)) & 1
\end{array}\right] \neq 0
$$

at $t=0$. Note that this noncharacteristic conditon holds true whatever f is given. In view of (1.1), if $|t|$ is sufficiently small there exists the solution of the form $u=u(x, t)$. But what if the time t elapses further? From $F\left(\phi_{1}(x, t, u), \phi_{2}(x, t, u)\right)=$ $F(x, t, u)=0$,

$$
\begin{align*}
& u_{x}=-\frac{F_{x}}{F_{u}}=-\frac{-f^{\prime}}{1+f^{\prime}(x-a(u) t) a^{\prime}(u) t} \tag{1.2}\\
& u_{t}=-\frac{F_{t}}{F_{u}}=-\frac{-f^{\prime} a(u)}{1+f^{\prime}(x-a(u) t) a^{\prime}(u) t} \tag{1.3}
\end{align*}
$$

In case $f^{\prime} \neq 0$, if $|t|$ increases on to make denominators of (1.2) and (1.3) approach $0, u_{x}$ and u_{t} blow up to $\pm \infty$, which we call shock.

Example 1.2. Let $x \in \mathbb{R}$ and $u(x, t)$ be the solution to

$$
\left\{\begin{array}{l}
u \cdot u_{x}+u_{t}=0 \tag{1.4}\\
u(x, 0)=-x
\end{array}\right.
$$

Consider in $\{(x, t, u)\}$

$$
\frac{d x}{u}=\frac{d t}{1}=\frac{d u}{0}
$$

Solutions are $\phi_{1}:=u=$ constant from the second identity and $\phi_{2}:=x-u t=$ constant by $d x-u d t=0$ from the first identity. The general solution is $F(u, x-u t)=0$ for some function F. Along the initial curve $\phi_{1}=-x$ and $\phi_{2}=x$, hence $\phi_{1}+\phi_{2}=0$ i.e. $u+x-u t=0$. Hence the solution to the initial value problem is $F(x, t, u)=$ $(1-t) u+x=0$, which is $u=-\frac{x}{1-t}$ for $|t| \approx 0 . F_{u}=1-t$ indicates that there is a shock at $t=1$. The level curves of the solution describes the shock in geometric manner. Level curves for $u=0, u=1$ and $u=2$ are $x=0, t=x+1$ and $t=x / 2+1$ respectively, which intersect one another at $x=0$ and $t=1$. This means that the flows continues smoothly while $t<1$ but it runs into the infinite increase or decrease, namely shock at $t=1$.

Exercise 1.3. Let $u(x, t), x \in \mathbb{R}$ be the function that solves an initial value problem of 1 dimensional conservation law

$$
\left\{\begin{array}{l}
u_{t}+2 u u_{x}=0 \\
u(x, 0)=10-x .
\end{array}\right.
$$

(1) Find a local solution near $(x, t)=(0,0)$.
(2) Find level curves in $\{(x, t)\}$ plane, for example $u=5, u=10$ etc.
(3) When does the shock occur?

CHAPTER 2

Cauchy Kowalesky Theorem

1. Characteristic of linear partial differential oprators

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega$ an open subset in \mathbb{R}^{n}. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$, we let $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $\alpha!=\alpha_{1}!\cdots \alpha_{n}$!.

For $x \in \mathbb{R}^{n}$ and $u(x)$ a function in Ω we put $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\partial^{\alpha} u(x):=$ $\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} u(x)$.

Definition 1.1. For a nonnegative integer k and functions $a_{\alpha}(x)$ and $f(x)$

$$
\sum_{|J| \leq k} a_{\alpha}(x) \cdot \partial^{\alpha} u(x)=f(x)
$$

is called linear partial differential equation of order k.
Remark 1.2. Note that the coefficient functions a_{α} depend only on x not on u.

Our first concern about such equations is the characteristic of the linear partial differential operator involved. Roughly speaking, the notion of characteristic is the "strength" of a linear partial differential operator

$$
\begin{equation*}
L=\sum_{|\alpha| \leq k} a_{\alpha}(x) \cdot \partial^{\alpha} \tag{1.1}
\end{equation*}
$$

in a certain direction.
Definition 1.3. For (1.1), the characteristic form at $x \in \Omega$ is the homogeneous polynominal of degree k defined by

$$
\begin{equation*}
\chi_{L}(x, \xi):=\sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha} \tag{1.2}
\end{equation*}
$$

for nonzero vector ξ in \mathbb{R}^{n}. This is also called principal symbol of (1.1).
Definition 1.4. A vector $\xi \neq 0$ is characteristic for L at x if $\chi_{L}(x, \xi)=0$. The set of characteristic vectors, denoted by char ${ }_{x} L$, is called characteristic variety.

Proposition 1.5. For (1.1) the following holds.
(1) $\operatorname{char}_{x} L$ is intrinsically defined i.e. independent of co-ordinates.
(2) L is said to be elliptic if $\chi_{L}(x, \xi) \neq 0$ for any $x \in \Omega$ and nonzero $\xi \in \mathbb{R}^{n}$. Such notion of ellipticity is intrinsic.
Proof. Suppose that (1.1) is defined on an open set U_{p} of n dimensional manifold M with $p \in M$. Let $\mathcal{X}: U_{p} \rightarrow \Omega$ and $\mathcal{Y}: U_{p} \rightarrow \Omega^{\prime}$ be two local co-ordinate charts. Their transition map is a diffeomorphism $y=F(x)$ from $x \in \Omega$ to $y \in \Omega^{\prime}$
where $F:=\mathcal{Y} \circ \mathcal{X}^{-1}$. Jacobian of F is

$$
J=\left[\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \cdots & \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right]
$$

How the vector and co-vector fields components change per co-ordinates changes are as follows. Tangent vectors in two co-ordinate expressions are

$$
a_{j} \frac{\partial}{\partial x_{j}}=b_{i} \frac{\partial}{\partial y_{i}} .
$$

Noting that $\frac{\partial}{\partial x_{j}}=\frac{\partial y_{i}}{\partial x_{j}} \frac{\partial}{\partial y_{i}}$ we have

$$
a_{j} \frac{\partial y_{i}}{\partial x_{j}}=b_{i} \quad \text { or } \quad\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=J \cdot\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

i.e. $\underbrace{\mathbf{b}}_{\text {new }}=J \cdot \underbrace{\mathbf{a}}_{\text {old }}$. Tangent vector components transform is Jacobian multiplication.

Cotangent vectors in two co-ordinates expressions are

$$
\eta_{j} d x_{j}=\xi_{i} d y_{i} .
$$

Noting $d y_{i}=\frac{\partial y_{i}}{\partial x_{j}} d x_{j}$,

$$
\eta_{j}=\xi_{i} \frac{\partial y_{i}}{\partial x_{j}} \quad \text { or } \quad\left[\begin{array}{c}
\eta_{1} \\
\vdots \\
\eta_{n}
\end{array}\right]=J^{t} \cdot\left[\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{n}
\end{array}\right]
$$

i.e. $\eta=J^{t} \xi$ hence $\underbrace{\xi}_{\text {new }}=\left(J^{t}\right)^{-1} \cdot \underbrace{\eta}_{\text {old }}$. The diffeomorphic transition map $y=F(x)$ and transformation rule $\frac{\partial}{\partial x_{i}}=\frac{\partial y_{j}}{\partial x_{i}} \frac{\partial}{\partial y_{j}}$ change (1.1) and (1.2) into

$$
\begin{align*}
L^{\prime} & =\sum_{|\alpha| \leq k} a_{\alpha}\left(F^{-1}(y)\right)\left(J^{t} \partial_{y}\right)^{\alpha} \tag{1.3}\\
\chi_{L^{\prime}}(y, \xi) & =\sum_{|\alpha|=k} a_{\alpha}\left(F^{-1}(y)\right)\left(J^{t} \xi\right)^{\alpha} \tag{1.4}
\end{align*}
$$

respectively. Comparison of (1.2) and (1.4) shows that

$$
\xi \in \operatorname{char}_{y}\left(L^{\prime}\right) \quad \Rightarrow \quad\left(J^{t} \xi\right) \in \operatorname{char}_{\underbrace{F^{-1}(y)}_{=x}}^{(L)}
$$

and characteristic forms obey tangent vector transformation rules. Hence we define the characteristic variety as a subset of cotangent space to have them intrinsic. It now follows easily that the ellipticity is also intrinsic in view of its definition.

Definition 1.6. A hypersurface \mathcal{S} in Ω is characteristic at x for L in (1.1) if normal vector $\nu(x)$ to \mathcal{S} is in $\operatorname{char}_{x}(L) . \mathcal{S}$ is non-characteristic if \mathcal{S} is not characteristic at any point.

2. Non-characteristic directions

For the linear partial differential operator $L=\sum_{|\alpha| \leq k} a_{\alpha}(x) \partial^{\alpha}$ and $\xi \in \operatorname{char}_{x}(L)$, we can choose suitable co-ordinates ${ }^{1}$ to have $\xi \in(0, \ldots, 0, \underbrace{1}_{j t h}, 0, \ldots, 0)$ after coordinate transformation. Then

$$
\left\{\begin{array}{ll}
\xi \in \operatorname{char}_{x}(L) & \Leftrightarrow \quad \text { the coefficient to }\left(\frac{\partial}{\partial x_{j}}\right)^{k} \text { vanishes at } x \\
\xi \notin \operatorname{char}_{x}(L) & \Leftrightarrow{ }^{2}
\end{array} \text { the coefficient to }\left(\frac{\partial}{\partial x_{j}}\right)^{k} \text { is nonzero at } x . ~ \$\right.
$$

For the second case $L u=f$ can be solved for $\partial_{j}^{k} u$ to give

$$
\partial_{j}^{k} u=G(x, \partial^{\alpha} u:|\alpha| \leq k, \alpha \neq(0, \ldots, \underbrace{1}_{j t h}, \ldots, 0))
$$

which shows that the partial differential equation $L u=f$ has control over the solution u in ξ direction.
Note that L is elliptic at x if $\operatorname{char}_{x}(L)$ is an empty set and L is elliptic on Ω if it is elliptic at every $x \in \Omega$.

Example 2.1.
(1) For $u(x, y)$ defined on \mathbb{R}^{2}, consider $\Delta=\left(\frac{\partial}{\partial x}\right)^{2}+\left(\frac{\partial}{\partial y}\right)^{2}$. Note that the coefficients are constants, hence independent of $x . \chi_{\Delta}(x, \xi)=\xi_{1}^{2}+\xi_{2}^{2} \neq 0$ for $\operatorname{all}\left(\xi_{1}, \xi_{2}\right) \neq 0$ which implies that it is elliptic.
(2) Consider the wave operator $L=\left(\frac{\partial}{\partial x}\right)^{2}-\left(\frac{\partial}{\partial y}\right)^{2}$. The coefficients are also constant, independent of $x . \chi_{L}(x, \xi)=\xi_{1}^{2}-\xi_{2}^{2}$ vanishes for some nonzero vector ξ and hence L is not elliptic.
(3) For $u(x, t)$ defined on an open set of \mathbb{R}^{2}, consider the heat operator $L=$ $\frac{\partial}{\partial t}-\left(\frac{\partial}{\partial x}\right)^{2} \cdot \chi_{L}(x, \xi)=\left(\xi_{1}\right)^{2}$ admits a non-characteristic vector $\xi=(0,1)$ and hence L is not elliptic.

[^0]
[^0]: ${ }^{1}$ Rotations and dilations etc.

