
Lecture 03

1.5. Initial value problem for 1 dimensional conservation law. Let
ρ(x, t) and q(x, t) be density and flux of fluid at x ∈ R and t ∈ R.

ρt + qx = 0

is called 1 dimensional conservation law. This is mass conservation law of fluid.
We restrict our consideration to ρ and q which are dependent only on a function
u(x, t) i.e. ρ = ρ(u(x, t)) and q = q(u(x, t)).

Example 1.1. Let u(x, t) solve{
a(u) · ux + ut = 0
u(x, 0) = f(x).

for some function a(·) and f(·). Let A′(u) = a(u) for a function A(·) then (1.1)
becomes (A(u))x + ut = 0, which is a conservation law if u and A(u) are regarded
as density and flux respectively. So (1.1) is the initial value problem of 1 dimen-
sional conservation law. To find the solution, consider the associated vector field
(a(u(x, t)), 1, 0) on {(x, t, u)} and obtain its 1st integrals from the following equation
for integral curves.

dx

a(u)
=

dt

1
=

du

0
From the second identity φ1(x, t, u) := u is constant along integral curves. The first
identity implies that dx − a(u)dt = 0 so that φ2(x, t, u) := x − a(u)t is constant
along integral curves. Note that a(u) is kept constant since u is. Now φ1 and φ2

are functionally independent 1st integrals so that every integral surface is given by
F (φ1, φ2) = 0 for a function F . Solve this for u to get the general solution for (1.1).
Along initial curve (x, 0, f(x)), φ1 = f(x) and φ2 = x. Hence φ1 − f(φ2) = 0. Let
F (φ1, φ2) := u− f(x− a(u)t) = 0 and we solve this for u = u(x, t).

To solve it for u requires the implicit function theorem condition

(1.1) Fu = 1− f ′(x− a(u)t) · (−a(u)t) = 1 + f ′(x− a(u)t) · a′(u)t 6= 0.

Now will this initial value problem have the unique solution? We need to check
that the initial value u = f(x) at t = 0 is noncharacteristic. Actually

det
[

1 0
a(f(x)) 1

]
6= 0

at t = 0. Note that this noncharacteristic conditon holds true whatever f is given.
In view of (1.1), if |t| is sufficiently small there exists the solution of the form
u = u(x, t). But what if the time t elapses further? From F (φ1(x, t, u), φ2(x, t, u)) =
F (x, t, u) = 0,

ux = −Fx

Fu
= − −f ′

1 + f ′(x− a(u)t)a′(u)t
(1.2)

ut = − Ft

Fu
= − −f ′a(u)

1 + f ′(x− a(u)t)a′(u)t
.(1.3)

In case f ′ 6= 0, if |t| increases on to make denominators of (1.2) and (1.3)
approach 0, ux and ut blow up to ±∞, which we call shock.
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Example 1.2. Let x ∈ R and u(x, t) be the solution to

(1.4)
{

u · ux + ut = 0
u(x, 0) = −x.

Consider in {(x, t, u)}
dx

u
=

dt

1
=

du

0
.

Solutions are φ1 := u = constant from the second identity and φ2 := x−ut =constant
by dx− udt = 0 from the first identity. The general solution is F (u, x− ut) = 0 for
some function F . Along the initial curve φ1 = −x and φ2 = x, hence φ1 + φ2 = 0
i.e. u + x − ut = 0. Hence the solution to the initial value problem is F (x, t, u) =
(1− t)u + x = 0, which is u = − x

1−t for |t| ≈ 0. Fu = 1− t indicates that there is
a shock at t = 1. The level curves of the solution describes the shock in geometric
manner. Level curves for u = 0, u = 1 and u = 2 are x = 0, t = x + 1 and
t = x/2 + 1 respectively, which intersect one another at x = 0 and t = 1. This
means that the flows continues smoothly while t < 1 but it runs into the infinite
increase or decrease, namely shock at t = 1.

Exercise 1.3. Let u(x, t), x ∈ R be the function that solves an initial value
problem of 1 dimensional conservation law{

ut + 2uux = 0
u(x, 0) = 10− x.

(1) Find a local solution near (x, t) = (0, 0).
(2) Find level curves in {(x, t)} plane, for example u = 5, u = 10 etc.
(3) When does the shock occur?



CHAPTER 2

Cauchy Kowalesky Theorem

1. Characteristic of linear partial differential oprators

Let x = (x1, . . . , xn) ∈ Ω an open subset in Rn. For α = (α1, . . . , αn) ∈ Nn
0 , we

let |α| = α1 + · · ·+ αn and α! = α1! · · ·αn!.
For x ∈ Rn and u(x) a function in Ω we put xα := xα1

1 · · ·xαn
n and ∂αu(x) :=(

∂
∂x1

)α1

· · ·
(

∂
∂xn

)αn

u(x).

Definition 1.1. For a nonnegative integer k and functions aα(x) and f(x)∑
|J|≤k

aα(x) · ∂αu(x) = f(x)

is called linear partial differential equation of order k.

Remark 1.2. Note that the coefficient functions aα depend only on x not on
u.

Our first concern about such equations is the characteristic of the linear partial
differential operator involved. Roughly speaking, the notion of characteristic is the
”strength” of a linear partial differential operator

(1.1) L =
∑
|α|≤k

aα(x) · ∂α

in a certain direction.

Definition 1.3. For ( 1.1), the characteristic form at x ∈ Ω is the homoge-
neous polynominal of degree k defined by

(1.2) χL(x, ξ) :=
∑
|α|=k

aα(x)ξα

for nonzero vector ξ in Rn. This is also called principal symbol of (1.1).

Definition 1.4. A vector ξ 6= 0 is characteristic for L at x if χL(x, ξ) = 0.
The set of characteristic vectors, denoted by charxL, is called characteristic variety.

Proposition 1.5. For (1.1) the following holds.

(1) charxL is intrinsically defined i.e. independent of co-ordinates.
(2) L is said to be elliptic if χL(x, ξ) 6= 0 for any x ∈ Ω and nonzero ξ ∈ Rn.

Such notion of ellipticity is intrinsic.

Proof. Suppose that (1.1) is defined on an open set Up of n dimensional
manifold M with p ∈ M . Let X : Up → Ω and Y : Up → Ω′ be two local co-ordinate
charts. Their transition map is a diffeomorphism y = F (x) from x ∈ Ω to y ∈ Ω′
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4 2. CAUCHY KOWALESKY THEOREM

where F := Y ◦ X−1. Jacobian of F is

J =


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂yn

∂x1
· · · ∂yn

∂xn

 .

How the vector and co-vector fields components change per co-ordinates changes
are as follows. Tangent vectors in two co-ordinate expressions are

aj
∂

∂xj
= bi

∂

∂yi
.

Noting that ∂
∂xj

= ∂yi

∂xj

∂
∂yi

we have

aj
∂yi

∂xj
= bi or

 b1

...
bn

 = J ·

 a1

...
an


i.e. b︸︷︷︸

new

= J · a︸︷︷︸
old

. Tangent vector components transform is Jacobian multiplication.

Cotangent vectors in two co-ordinates expressions are

ηjdxj = ξidyi.

Noting dyi = ∂yi

∂xj
dxj ,

ηj = ξi
∂yi

∂xj
or

 η1

...
ηn

 = J t ·

 ξ1

...
ξn


i.e. η = J tξ hence ξ︸︷︷︸

new

= (J t)−1 · η︸︷︷︸
old

. The diffeomorphic transition map y = F (x)

and transformation rule ∂
∂xi

= ∂yj

∂xi

∂
∂yj

change (1.1) and (1.2) into

L′ =
∑
|α|≤k

aα(F−1(y))(J t∂y)α(1.3)

χL′(y, ξ) =
∑
|α|=k

aα(F−1(y))(J tξ)α(1.4)

respectively. Comparison of (1.2) and (1.4) shows that

ξ ∈ chary(L′) ⇒ (J tξ) ∈ char
F−1(y)︸ ︷︷ ︸

=x

(L)

and characteristic forms obey tangent vector transformation rules. Hence we define
the characteristic variety as a subset of cotangent space to have them intrinsic. It
now follows easily that the ellipticity is also intrinsic in view of its definition.

Definition 1.6. A hypersurface S in Ω is characteristic at x for L in (1.1) if
normal vector ν(x) to S is in charx(L). S is non-characteristic if S is not charac-
teristic at any point.
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2. Non-characteristic directions

For the linear partial differential operator L =
∑

|α|≤k aα(x)∂α and ξ ∈ charx(L),
we can choose suitable co-ordinates1 to have ξ ∈ (0, . . . , 0, 1︸︷︷︸

jth

, 0, . . . , 0) after co-

ordinate transformation. Then ξ ∈ charx(L) ⇔ the coefficient to
(

∂
∂xj

)k

vanishes at x,

ξ /∈ charx(L) ⇔ 2 the coefficient to
(

∂
∂xj

)k

is nonzero at x.

For the second case Lu = f can be solved for ∂k
j u to give

∂k
j u = G(x, ∂αu : |α| ≤ k, α 6= (0, . . . , 1︸︷︷︸

jth

, . . . , 0)),

which shows that the partial differential equation Lu = f has control over the
solution u in ξ direction.
Note that L is elliptic at x if charx(L) is an empty set and L is elliptic on Ω if it is
elliptic at every x ∈ Ω.

Example 2.1.

(1) For u(x, y) defined on R2, consider ∆ =
(

∂
∂x

)2
+

(
∂
∂y

)2

. Note that the

coefficients are constants, hence independent of x. χ∆(x, ξ) = ξ2
1 + ξ2

2 6= 0
for all(ξ1, ξ2) 6= 0 which implies that it is elliptic.

(2) Consider the wave operator L =
(

∂
∂x

)2 −
(

∂
∂y

)2

. The coefficients are also

constant, independent of x. χL(x, ξ) = ξ2
1 − ξ2

2 vanishes for some nonzero
vector ξ and hence L is not elliptic.

(3) For u(x, t) defined on an open set of R2, consider the heat operator L =
∂
∂t −

(
∂
∂x

)2
. χL(x, ξ) = (ξ1)

2 admits a non-characteristic vector ξ = (0, 1)
and hence L is not elliptic.

1Rotations and dilations etc.


