Lecture 03

1.5. Initial value problem for 1 dimensional conservation law. Let
p(x,t) and g(x,t) be density and flux of fluid at x € R and ¢t € R.

pt+QQ::0

is called 1 dimensional conservation law. This is mass conservation law of fluid.
We restrict our consideration to p and g which are dependent only on a function
u(@,?) ie. p = plu(z,1) and g = q(u(z, ).

ExXAMPLE 1.1. Let u(z,t) solve

{ a(u) uz +ur =0
u(z,0) = f(z).
for some function a(-) and f(-). Let A’(u) = a(u) for a function A(-) then (1.1)
becomes (A(u))y + ur = 0, which is a conservation law if v and A(u) are regarded
as density and flux respectively. So (1.1) is the initial value problem of 1 dimen-
sional conservation law. To find the solution, consider the associated vector field
(a(u(x,t)),1,0) on {(x,t,u)} and obtain its 1st integrals from the following equation
for integral curves.

de di  du

a(u) 1 0
From the second identity ¢1(x,t,u) := u is constant along integral curves. The first
identity implies that dz — a(u)dt = 0 so that ¢o(z,t,u) := & — a(u)t is constant
along integral curves. Note that a(u) is kept constant since u is. Now ¢; and ¢
are functionally independent 1st integrals so that every integral surface is given by
F(¢1,¢2) = 0 for a function F'. Solve this for u to get the general solution for (1.1).
Along initial curve (z,0, f(z)), ¢1 = f(x) and ¢ = x. Hence ¢; — f(¢2) = 0. Let
F(¢1,d2) :=u — f(z — a(u)t) = 0 and we solve this for u = u(z,t).

To solve it for u requires the implicit function theorem condition

(1.1) F,=1— f'(z —a(u)t) - (—a(u)t) =1+ f'(z — a(u)t) - a’(u)t # 0.
Now will this initial value problem have the unique solution? We need to check
that the initial value u = f(x) at ¢t = 0 is noncharacteristic. Actually

oo o 1] %0

at t = 0. Note that this noncharacteristic conditon holds true whatever f is given.
In view of (1.1), if |¢| is sufficiently small there exists the solution of the form
u = u(x,t). But what if the time ¢ elapses further? From F(¢1(z,t,u), ¢2(x,t,u)) =
F(z,t,u) =0,

F, —f
(1.2) Yo = TR T I fir —afba ()t
(1.3) up = S Lol

F, 1+ f'(x—a(wt)a (u)t
In case f’ # 0, if |t| increases on to make denominators of (1.2) and (1.3)
approach 0, u, and u; blow up to +oo, which we call shock.
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EXAMPLE 1.2. Let € R and u(z,t) be the solution to

U Uy +up =0

(1.4) { u(z,0) = —x.
Consider in {(x,t,u)}

de dt du

w 107
Solutions are ¢ := u = constant from the second identity and ¢ := x—ut =constant
by dx — udt = 0 from the first identity. The general solution is F'(u,z — ut) = 0 for
some function F. Along the initial curve ¢ = —z and ¢2 = x, hence ¢1 + ¢ =0
i.e. u+ 2 —ut = 0. Hence the solution to the initial value problem is F(x,t,u) =
(1 =t)u+2 =0, which is u = —g%; for [t| = 0. F,, = 1 —t indicates that there is
a shock at ¢t = 1. The level curves of the solution describes the shock in geometric
manner. Level curves for u = 0, v = 1 and v = 2 are x = 0, t =  + 1 and
t = x/2 + 1 respectively, which intersect one another at = 0 and ¢ = 1. This
means that the flows continues smoothly while ¢ < 1 but it runs into the infinite
increase or decrease, namely shock att=1.

EXERCISE 1.3. Let u(x,t), + € R be the function that solves an initial value
problem of 1 dimensional conservation law

u + 2uu, =0
u(z,0) =10 — x.

(1) Find a local solution near (z,t) = (0,0).
(2) Find level curves in {(z,t)} plane, for example u =5, u = 10 etc.
(3) When does the shock occur?



CHAPTER 2

Cauchy Kowalesky Theorem

1. Characteristic of linear partial differential oprators

Let © = (z1,...,2y,) € Q an open subset in R™. For a = (aq,...,ay,) € Njj, we
let || = a1 + 4+ a, and a! = 1! ap!.
For z € R" and u(z) a function in Q we put 2% := z{* --- z&~ and 9%u(x) :=

(55) " () " i

DEFINITION 1.1. For a nonnegative integer k and functions a,(x) and f(x)

> aale) - 0%ulz) = f(x)
[7|<k
is called linear partial differential equation of order k.

REMARK 1.2. Note that the coefficient functions a, depend only on x not on

Our first concern about such equations is the characteristic of the linear partial
differential operator involved. Roughly speaking, the notion of characteristic is the
7strength” of a linear partial differential operator

(1.1) L= aa(z) 0"
lal<k
in a certain direction.

DEFINITION 1.3. For ( 1.1), the characteristic form at x €  is the homoge-
neous polynominal of degree k defined by

(1.2) XL(@,8) = Y aa(x)E”
la|=k
for nonzero vector ¢ in R™. This is also called principal symbol of (1.1).

DEFINITION 1.4. A vector £ # 0 is characteristic for L at x if xr(z,£) = 0.
The set of characteristic vectors, denoted by char, L, is called characteristic variety.

PROPOSITION 1.5. For (1.1) the following holds.

(1) char,L is intrinsically defined i.e. independent of co-ordinates.
(2) L is said to be elliptic if xp(x,£) # 0 for any x € Q and nonzero £ € R™.
Such notion of ellipticity is intrinsic.

PROOF.  Suppose that (1.1) is defined on an open set U, of n dimensional
manifold M withp € M. Let X : U, — Q and Y : U, — Q' be two local co-ordinate
charts. Their transition map is a diffeomorphism y = F(z) from = € Q to y € &
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4 2. CAUCHY KOWALESKY THEOREM

where F':= Y o X~1. Jacobian of F is

9y . On
Oz Oy,
J=1 :
Oyn ... Oyn
oz oz,

How the vector and co-vector fields components change per co-ordinates changes
are as follows. Tangent vectors in two co-ordinate expressions are

. o 0
7 8%‘]' S 8yi ’
3 o _ Oyi o
Noting that Doy = a9y WO have
b1 aq
yi i . _
a; =b; or : =J.
817]‘
by, an
ie. ‘b =J- a . Tangent vector components transform is Jacobian multiplication.
~— ~—
new old

Cotangent vectors in two co-ordinates expressions are

njdr; = &idy;.

: . _ Oy .
Noting dy; = e dx;,
m &1
Oy . .
N = 67, axj or : — Jt . :
n én
ie. n=J¢ hence & = (J')~!. 5 . The diffeomorphic transition map y = F(z)
—~— —~
new old
and transformation rule 6%1_ = %8%,- change (1.1) and (1.2) into
(1.3) L= S au(F ()0,
| <K
(1.4) xv(®:6) = Y aa(F )"
la|=k

respectively. Comparison of (1.2) and (1.4) shows that

Eechary (L)) = (J%) € charF_l(y)(L)
——r

and characteristic forms obey tangent vector transformation rules. Hence we define

the characteristic variety as a subset of cotangent space to have them intrinsic. It
now follows easily that the ellipticity is also intrinsic in view of its definition.

DEFINITION 1.6. A hypersurface S in €2 is characteristic at x for L in (1.1) if
normal vector v(z) to S is in chary(L). S is non-characteristic if S is not charac-
teristic at any point.



2. NON-CHARACTERISTIC DIRECTIONS 5

2. Non-characteristic directions

For the linear partial differential operator L =}, <} @a(2)0* and £ € chary (L),
we can choose suitable co-ordinates! to have & € (0,...,0,_1 ,0,...,0) after co-
jth
ordinate transformation. Then

k
¢ echary,(L) < the coefficient to ( d ) vanishes at z,

ij

Ak
¢ ¢ char, (L) <2 the coefficient to (%) is nonzero at z.
J

For the second case Lu = f can be solved for 8;-% to give

afu =G(x,0% : |a| < k,a # (O,...,\l/_/,...,O)),
jth
which shows that the partial differential equation Lu = f has control over the
solution w in ¢ direction.
Note that L is elliptic at x if char, (L) is an empty set and L is elliptic on Q if it is
elliptic at every = € Q.

EXAMPLE 2.1.
(1) For u(z,y) defined on R?, consider A = (C%)2 + (%) . Note that the

coefficients are constants, hence independent of x. xa(z,£) = 2 +£3 #0
for all(&1,&2) # 0 which implies that it is elliptic.
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(2) Consider the wave operator L = (%)2 - (a%) . The coefficients are also

constant, independent of z. xr(x,£) = €2 — £3 vanishes for some nonzero
vector £ and hence L is not elliptic.

(3) For u(z,t) defined on an open set of R?, consider the heat operator L =
2 - (%)2. xo(z, &) = (&) admits a non-characteristic vector & = (0,1)
and hence L is not elliptic.

IRotations and dilations etc.



